科目代码、名称: 743农学基础数学
一、考试形式与试卷结构
(一)试卷满分值及考试时间
本试卷满分为150分,考试时间为180分钟。
(二)答题方式
答题方式为闭卷、笔试。试卷由试题和答题纸组成;答案必须写在答题纸(由考点提供)相应的位置上。
(三)试卷内容结构
考试内容主要包括《微积分》、《线性代数》和《概率论与数理统计》。
(四)试卷题型结构
1.单项选择题;
2.填空题;
3.解答题(包括证明题)。
二、考查目标
农学门类数学考试涵盖高等数学、线性代数、概率论与数理统计等公共基础课程。要求考生比较系统地理解数学的基本概念和基本理论,掌握数学的基本方法,具备抽象思维能力、逻辑推理能力、空间想象能力、运算能力以及综合运用所学的知识分析问题和解决问题的能力。
三、考查范围或考试内容概要
考试科目包括《微积分》、《线性代数》和《概率论与数理统计》.
微 积 分
1) 函数、极限、连续
考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
,
函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求
1. 理解函数的概念,掌握函数的表示法,会建立应用问题中的函数关系.
2. 了解函数的有界性、单调性、周期性和奇偶性.
3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.
5. 了解数列极限和函数极限(包括左极限和右极限)的概念.
6. 了解极限的性质与极限存在的两个准则,掌握极限四则运算法则,掌握利用两个重要极限求极限的方法.
7. 理解无穷小量的概念和基本性质,掌握无穷小量的比较方法,了解无穷大量的概念及其与无穷小量的关系.
8. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
9. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
2) 一元函数微分学
考试内容
导数和微分的概念 导数的几何意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数和隐函数的微分法 高阶导数 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数的最大值与最小值
考试要求
1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义,会求平面曲线的切线方程和法线方程.
2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求隐函数的导数.
3.了解高阶导数的概念,掌握二阶导数的求法.
4.了解微分的概念以及导数与微分之间的关系,会求函数的微分.
5.理解罗尔(Rolle)定理和拉格朗日(Lagrange)中值定理,掌握这两个定理的简单应用.
6.会用洛必达法则求极限.
7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及应用.
8.会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线(水平、铅直渐近线).
3) 一元函数积分学
考试内容
原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数与其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分方法与分部积分法 反常(广义)积分 定积分的应用
考试要求
1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.
2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法与分部积分法.
3.会利用定积分计算平面图形的面积和旋转体的体积.
4.了解无穷区间上的反常积分的概念,会计算无穷区间上的反常积分.
4) 多元函数微积分学
考试内容
多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值 二重积分的概念、基本性质和计算
考试要求
1.了解多元函数的概念,了解二元函数的几何意义.
2.了解二元函数的极限与连续的概念.
3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件.
5.了解二重积分的概念与基本性质,会用直角坐标系计算二重积分.
5) 常微分方程
考试内容
常微分方程的基本概念 变量可分离的微分方程 一阶线性微分方程
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程和一阶线性微分方程的求解方法.
线 性 代 数
1) 行列式
考试内容
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
2) 矩阵
考试内容
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价
考试要求
1.理解矩阵的概念,了解单位矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,了解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.
3) 向量
考试内容
向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系
考试要求
1.了解向量的概念,掌握向量的加法和数乘运算法则.
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大线性无关组和秩的概念,会求向量组的极大线性无关组及秩.
4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系.
4) 线性方程组
考试内容
线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组的解之间的关系 非齐次线性方程组的通解
考试要求
1.会用克莱姆法则解线性方程组.
2.掌握非齐次线性方程组有解和无解的判定方法.
3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.了解非齐次线性方程组的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.
5) 矩阵的特征值和特征向量
考试内容
矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵
考试要求
1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.
2.了解矩阵相似的概念和相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.
3.了解实对称矩阵的特征值和特征向量的性质.
概率论与数理统计
1) 随机事件和概率
考试内容
随机事件与样本空间 事件的关系与运算 概率的基本性质 古典型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验
考试要求
1.了解样本空间的概念,理解随机事件的概念,掌握事件的关系与运算.
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.
2) 随机变量及其分布
考试内容
随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布
考试要求
1.理解随机变量的概念.理解分布函数
的概念及性质.会计算与随机变量相联系的事件的概率.
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、泊松(Poisson)分布 及其应用.
3.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为
4.会求随机变量简单函数的分布.
3) 二维随机变量及其分布
考试内容
二维随机变量及其分布 二维离散型随机变量的概率分布和边缘分布 二维连续型随机变量的概率密度和边缘概率密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个随机变量简单函数的分布
考试要求
1.理解二维随机变量的概念,理解二维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布和边缘分布,理解二维连续型随机变量的概率密度和边缘密度,会求与二维离散型变量相关事件的概率.
2.理解随机变量的独立性及不相关性的概念,了解随机变量相互独立的条件.
3.了解二维均匀分布,了解二维正态分布
的概率密度,了解其中参数的概率意义.
4.会求两个独立随机变量和的分布.
4) 随机变量的数字特征
考试内容
随机变量的数学期望(均值)、方差、标准差及其性质 随机变量简单函数的数学期望 矩、协方差和相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.
2.会求随机变量简单函数的数学期望.
5) 大数定律和中心极限定理
考试内容
切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 棣莫弗一拉普拉斯(De Moivre-Laplace)定理 列维一林德伯格(Levy-Lindberg)定理.
考试要求
1.了解切比雪夫不等式.
2.了解切比雪夫大数定律和伯努利大数定律.
3.了解棣莫弗—拉普拉斯定理(二项分布以正态分布为极限分布)和列维—林德伯格定理(独立同分布随机变量序列的中心极限定理).
6) 数理统计的基本概念
考试内容
总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布.
考试要求
1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为
2.了解 分布、 分布和 分布的概念和性质,了解分位数的概念并会查表计算.
3.了解正态总体的常用抽样分布.
参考教材或主要参考书:
《高等数学》(第七版)同济大学数学系编,高等教育出版社,2014;
《工程数学线性代数》(第六版)同济大学数学系编,高等教育出版社,2014;
《新编概率论与数理统计》(第二版)肖筱南等编,北京大学出版社,2013..