高考数学:如何利用数学题型与答题策略
一、近年高考数学命题的中心是数学思想方法,考试命题有四个基本点
1。在基础中考能力,这主要体现在选择题和填空题。
2。在综合中考能力,主要体现在后三道大题。
3。在应用中考能力,在选择填空中,会出现一、二道大众数学的题目,在大题中有一道应用题。
4。在新型题中考能力。
这"四考能力",围绕的中心就是考查数学思想方法。
二、题型特点
1。选择题
(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强。试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,绝不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容。在高考的数学选择题中,定量型的试题所占的比重很大。而且,许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴涵了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在。绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力,思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它辨证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是:几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
(5)解法多样化:与其他学科比较,"一题多解"的现象在数学中表现突出。尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。
2。填空题
填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。不过填空题和选择题也有质的区别。首先,表现为填空题没有备选项。因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些,长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。其次,填空题的结构,往往是在一个正确的命题或断言中,抽去其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活。在对题目的阅读理解上,较之选择题,有时会显得较为费劲。当然并非常常如此,这将取决于命题者对试题的设计意图。
填空题的考点少,目标集中,否则,试题的区分度差,其考试信度和效度都难以得到保证。
这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因。有的可能是一窍不通,入手就错了,有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管它们的水平存在很大的差异。
3。解答题
解答题与填空题比较,同属提供型的试题,但也有本质的区别。首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明。填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括和准确。其次,试题内涵,解答题比起填空题要丰富得多。解答题的考点相对较多,综合性强,难度较高。解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况评定分数,用以反映其差别,因而解答题命题的自由度,较之填空题大得多。