初中数学解题方法:证明弧相等的方法
2016-10-28来源:易贤网

1、定义;同圆或等圆中,能够完全重合的两段弧。

2、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。

推论1:①平分弦(不是直径)的直径垂直弦,并且平分弦所对的两条弧。

②垂直平分一条弦的直线,经过圆心,并且平分弦所对的两条弧。

③平分一条弦所对的弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

推论2:两条平行弦所夹的弧相等

3、圆心角、弧、圆周角之间度数关系;(圆心角 = 弧 = 2圆周角)

4、圆周角定理的推论1;(同弧或等弧所对的圆周角相等,同圆或等圆中相等的圆周角所对的弧相等)

十一、切线小结

1、证明切线的三种方法:

⑴定义——一个交点;

⑵d=r(若一条直线到圆心的距离等于半径,则这条直线是圆的切线);

⑶切线的判定定理;(经过半径外端,并且垂直这条半径的直线是圆的切线)

2、切线的八个性质:

⑴定义:唯一交点;

⑵切线和圆心的距离等于半径(d=r);

⑶切线的性质定理:圆的切线垂直于过切点的半径;

⑷推论1:过圆心(且垂直于切线的直线)必过切点;

⑸推论2:过切点(且垂直于切线的直线)必过圆心;

⑹切线长相等;过圆外一点作圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两切线的夹角。

⑺ 连接两平行切线切点间的线段为直径

⑻ 经过直径两端点的切线互相平行。

3、证明切线的两种类型:

⑴已知直线和圆相交于一点

证明方法:连交点,证垂直

⑵未知直线和圆是否相交于哪点或没告诉交点

证明方法:做垂直,证半径

2025公考·省考培训课程试听预约报名

  • 报班类型
  • 姓名
  • 手机号
  • 验证码
推荐信息